Publications

  1. Ie Mei Bhattacharyya, Izhar Ron, Ruth Shima-Edelstein, Evgeny Pikhay, Yakov Roizin, Gil Shalev,'A New Approach toward the Realization of Specific and Label-Free Biological Sensing Based on Field-Effect Devices', Advanced Electronic Materials (2022) https://doi.org/10.1002/aelm.202200399

  2. Ankit Chauhan, Ashish Prajapati, Jordi Llobet, Helder Fonseca, Patrícia C Sousa, Carlos Calaza, Gil Shalev,'Incorporation of nano-features into surface photoactive arrays for broadband absorption of the solar radiation', Solar Energy Materials and Solar Cells (2022) DOI: 10.1016/j.solmat.2022.111864

  3. Sarah Sowmya Priya Konedana, Ashish Prajapati, Ankit Chauhan, Haim Elisha, Jordi Llobet, Patrícia C Sousa, Helder Fonseca, Carlos Calaza, João Gaspar, Gil Shalev,'Photocurrent Enhancement with Arrays of Silicon Light Nanotowers for Photovoltaic Applications', ACS Applied Nano Materials (2022), DOI: 10.1021/acsanm.2c00884

  4. Ie Mei Bhattacharyya, Izhar Ron, Ankit Chauhan, Evgeny Pikhay, Doron Greental, Niv Mizrahi, Yakov Roizin, Gil Shalev, 'A new approach towards the Debye length challenge for specific and label-free biological sensing based on field-effect transistors', Nanoscale (2022), DOI: 10.1039/D1NR08468B

  5. Mohammed Amir Yakoob, Jani Lamminaho, Karlis Petersons, Ashish Prajapati, Elodie Destouesse, Bhushan Ramesh Patil, Horst-Günter Rubahn, Gil Shalev, Jan Stensborg, and Morten Madsen, 'Efficiency Enhanced Scalable Organic Photovoltaics Using Roll-To-Roll (R2R) Nanoimprint Lithography', Chemistry Sustainability Energy Materials (2021) , DOI: 10.1002/cssc.202101611

  6. Ashish Prajapati and Gil Shalev, 'Omnidirectional and Wideband Absorption of Solar Radiation with Light Funnel Arrays Incorporated with Quasi-Nanolenses', ACS Applied Energy Materials (2021),  DOI:10.1021/acsaem.1c02665

  7. Haim Elisha, Ashish Prajapati, and Gil Shalev, 'Broadband Absorption in Thin Films Motivated by Strong Light Bending', Advanced Photonics Research (2021), DOI:10.1002/adpr.202000120 

  8. Ashish Prajapati, Jordi Llobet, Patrícia C Sousa, Helder Fonseca, Carlos Calaza, Gil Shalev, 'Broadband and Omnidirectional Antireflection Surfaces Based on Deep Subwavelength Features for Harvesting of the Solar Energy', Solar RRL (2021), DOI: 10.1002/solr.202100548

  9. Ankit Chauhan, Ashish Prajapati, Carlos Calaza, Helder Fonseca, Patrícia C. Sousa, Jordi Llobet, Gil Shalev, 'Near-Field Optical Excitations in Silicon Subwavelength Light Funnel Arrays for Broadband Absorption of the Solar Radiation', Solar RRL (2021), DOI: 10.1002/solr.202100721

  10. Ashish Prajapati, Gil Shalev 'Overcoming the Challenge of High Surface Recombination in Thin-Film Photovoltaic Cells Based on Subwavelength Arrays for Elevated Light Trapping' Solar RRL, (2021), DOI: 10.1002/solr.202100379

  11. Awad Shalabny, Francesco Buonocore, Massimo Celino, Gil Shalev, Lu Zhang, Weiwei Wu, Peixian Li, Jordi Arbiol, and Muhammad Y. Bashouti. 'Semiconductivity Transition in Silicon Nanowires by Hole TransportLayer', Nanoletters (2020), DOI:10.1021/acs.nanolett.0c03543

  12. Sarah Sowmya Priya Konedana, Ashish Prajapati, Haim Elisha, Gil Shalev, ‘Strong omnidirectional and broadband absorption of the solar light with arrays of submicron-scaled compound parabolic light concentrators’, Solar RRL, (2020), DOI:10.1002/solr.202000561

  13. A. Prajapati, Gil Shalev, ‘Photo-voltage management based on enhanced excitation levels in surface arrays of subwavelength silicon formations’, Solar RRL, (2020), DOI: 10.1002/solr.202000514

  14. A. Chauhan, G. Shalev, 'Broadband solar absorption with silicon metamaterials driven by strong proximity effects', Nanoscale Advances (2020), DOI:10.1039/c9na00711c. 

  15. A. Prajapati, J. Llobet, M. Antunes, S. Martins, H. Fonseca, C. Calaza, J. Gaspar, G. Shalev, 'Opportunities for enhanced omnidirectional broadband absorption of the solar radiation using deep subwavelength structures', Nano Energy 70, 104553 (2020).

  16.  A. Prajapati, J. Llobet, M. Antunes, S. Martins, H. Fonseca, C. Calaza, J. Gaspar, G. Shalev, 'An efficient and deterministic photon management using deep subwavelength features', Nano Energy 70, 104521 (2020).

  17. I. M. Bhattacharyya and G. Shalev, ‘Electrostatically-governed Debye screening length at the solution-solid interface for biosensing applications’, ACS Sens. 5, 154−161 (2020).

  18. A. Prajapati, G. Shalev, ‘Geometry-driven carrier extraction enhancement in photovoltaic cells based on arrays of subwavelength light funnels’, Nanoscale Advances, 12, 4755-4763 (2019)

  19. G. Marko, A. Prajapati, G. Shalev, ‘Subwavelength nonimaging light concentrators for the harvesting of the solar radiation’, Nano Energy, 61, 275-283 (2019).

  20. I. M. Bhattacharyya, S. Cohen, A. Shalabny, M. Bashouti, B. Akavayov, G. Shalev, ‘Specific and label-free immunosensing of protein-protein interactions with silicon-based immunoFETs’, Biosensors and Bioelectronics, 132, 143 (2019).

  21.  S. S. P. Konedana, E. Vaida, V. Viller, G. Shalev, ‘Optical absorption beyond the Yablonovitch limit with light funnel arrays’, Nano Energy, 59, 321 (2019).   

  22. A. Prajapati, A. Chauhan, D. Keizman, G. Shalev, ‘Approaching the Yablonovitch limit with free-floating arrays of subwavelength trumpet non-imaging light concentrators driven by extraordinary low transmission’, Nanoscale, 11, 3681 (2019).

  23. A. Prajapati, Y. Nissan, T. Gabay, G. Shalev, ‘Broadband absorption of the solar radiation with surface arrays of subwavelength light funnels’, Nano Energy, 54, 447 (2018).

  24. Y. Faingold, S. Fadida, A. Prajapati, J. Llobet, M. Antunes, H. Fonseca, C. Calaza, J. Gaspar and G. Shalev, ‘Efficient light trapping and broadband absorption of the solar spectrum in nanopillar arrays decorated with deep-subwavelength sidewall features’, Nanoscale, 10, 18613 (2018).

  25. A. Prajapati, Y. Nissan, T. Gabay and G. Shalev, ‘Light Trapping with Silicon Light Funnel Arrays’, Materials, 11, 445 (2018).

  26. A. Henning, N. Swaminathan, Y. Vaknin, T. Jurca, K. Shimanovich, G. Shalev and Y. Rosenwaks, ‘Control of the intrinsic sensor response to volatile organic compounds with fringing electric fields’, ACS Sensors, 3, 128 (2018).

  27. G. Shalev, ‘Addressing carrier extraction from optically-optimized nanopillar arrays for thin-film photovoltaics’, Nanoscale, DOI: 10.1039/C7NR05172G (2017).

  28. G. Shalev, ‘The Electrostatically Formed Nanowire: A Novel Platform for Gas-Sensing Applications’, Sensors, 17, 471 (2017).

  29. N. Swaminathan, A. Henning, T. Jurca, J. Hayon, G. Shalev and Y. Rosenwaks, ‘Effect of varying chain length of n-alcohols and n-alkanes detectedwith electrostatically-formed nanowire sensor, Sensors and Actuators B, 248, 240 (2017).

  30. N. Swaminathan, A. Henning, Y. Vaknin, K. Shimanovich, A. Godkin, G. Shalev and Y. Rosenwaks, ‘Dynamic Range Enhancement Using the Electrostatically Formed Nanowire Sensor’, ACS Sensors, 1, 688 (2016).

  31. G. Shalev, S.W. Schmitt, G. Brönstrup, and S. Christiansen., “Maximizing the ultimate absorption efficiency of vertically-aligned semiconductor nanowire arrays with wires of a low absorption cross-section” Nano Energy, 12, 801 (2015).

  32. G. Shalev, S.W. Schmitt, H. Embrechts, G. Brönstrup, and S. Christiansen, “Enhanced photovoltaics inspired by the fovea centralis” Nature Scientific Reports, 5, 8570 (2015).

  33. A. Henning, N. Swaminathan, A. Godkin, G. Shalev, I. Amit and Y. Rosenwaks, ‘Tunable diameter electrostatically-formed nanowire for high sensitivity gas sensing`, Nano Research, DOI 10.1007/s12274-015-0729-7 (2015).

  34. A. Henning,  M. Molotskii, N. Swaminathan,  Y. Vaknin, A. Godkin, G. Shalev and Yossi Rosenwaks, ‘Electrostatic Limit of Detection of Nanowire-Based Sensors’, Small, DOI: 10.1002/smll.201500566 (2015).

  35. A. Handelman, G. Shalev, and G. Rosenman, `Symmetry of bioinspired short peptide nanostructures and their Basic Physical Properties’, Israel Journal of Chemistry, 55, 1 (2015).

  36. S. W. Schmitt, G. Brönstrup, G. Shalev, S. K. Srivastava, M.Y. Bashouti, G. H. Dohler and S.H. Christiansen, “Probing photo-carrier collection efficiencies of individual silicon nanowire diodes on a wafer substrate”, Nanoscale, 6, 7897 (2014).

  37. G. Shalev, Y. Rosenwaks and I. Levy, "Label-Free Biomarker Detection with Electrostatically-Formed Nanowire Transistor", Nature Asia Materials, 5, 1, doi:10.1038/am.2012.75 (2013).

  38. N. Amdursky, G. Shalev, A. Handelman, S. Litsyn, A. Natan, Y. Roizin, Y. Rosenwaks, D. Szwarcman, and G. Rosenman, `Bioorganic nanodots for non-volatile memory devices`, APL Materials, 1, 062104, (2013).

  39. G. Shalev, Y. Rosenwaks and I. Levy, "The interplay between pH sensitivity and label-free protein detection in immunologically modified nano-scale field-effect transistor", Biosensors and Bioelectronics. 31, 510 (2012).

  40. O. Shaya, E. Halpern, B. Khamaisi, M. Shaked, Y. Usherenko, G. Shalev, A. Doron, I. Levy, Y. Rosenwaks, `Molecular gated transistors: Role of self-assembled monolayers`, Applied Surface Science, 256, 5789 (2010).

  41. G. Shalev, A. Cohen, A. Doron, A. Machauf, M. Horesh, U. Virobnik, D. Ullien and I. Levy, "Standard CMOS Fabrication of a Sensitive Fully Depleted Electrolyte-Insulator-Semiconductor Field Effect Transistor for Biosensor Applications", Sensors, 9, 4366 (2009).

  42. E. Halpern, B. Khamaisi, O. Shaya, G. Shalev, I. Levy, and Y. Rosenwaks, `Electrostatic properties of silane monolayers in an electrolytic environment`, Journal of Physical Chemistry C, 113, 16802 (2009).

  43. G. Shalev, E. Halpern, A. Doron, A. Cohen, Y. Rosenwaks, and I. Levy, "Surface chemical modification induces nanometer scale electron confinement in field effect device", Journal of Chemical Physics., 131, 024702 (2009).

  44. O. Shaya, M. Shaked, Y. Usherenko, E. Halpern, G. Shalev, A. Doron, I. Levy, and Y. Rosenwaks, `Tracing the Mechanism of Molecular Gated Transistors`, Jounral of Physical Chemistry C, 113, 6163 (2009).

  45. G. Shalev, A. Doron, U. Virobnik, A. Cohen, Y. Sanhedrai, and I. Levy, "Gain optimization in ion sensitive field-effect transistor based sensor with fully depleted silicon on insulator", Applied Physics. Letters, 93, 083902 (2008). 

  46. N. Parkansky, G. Shalev, B. Alterkop, S. Goldsmith, R.L. Boxman, Z. Barkay, L. Glikman, H. Wulff and M. Quaas, `Growth of ZnO nanorods by air annealing of ZnO films with an applied electric field`, Surface and Coatings Technology, 201, 2844 (2006).​